Fast F ragtgi_g

This is one of our trick articles. The frac-
tals are really just sneaky way fo get your
attention, After all, how many of wou wondd
read an article about speeding up 386
software by a factor of 1007 (On second
thought .}

5 excitement over the 386 dies
Adown, we're left with an uncom-

fortable feeling, A 32-bit operating
system one that will provide
MEMOory management over huge ad-
dress spaces — is a long way off, and
when it comes, it wili cost a Jot. But
don’t despair; the 386 has many power-
ful features that can be used under 3 16-
bit operating system, features that can
§1Ve vour programs a real kick.

This article shows how to use 32-bit
mstructions on the 38 under MS-DOS.
As an example, we'll turbocharge the
familiar Mandelbrot “zoom” Onur 386
version will use fixed point math to ob-
tain the equivalent of one MFLOPS (mil-
lion floating point operations per
second), without a math coprocessar.
Consequently, the program will take
minutes, not the usual hours or days, to
produce fractal diagrams like Figure 1.

To show how simple the process is,
the program will be written for a 16-bit C
compiler/assembler — that &5, a com.
pller/assembler that doesn't understand
386 _mnemonics, [begin with an over-
view of 386 “modes,” then move into a
brief discussion of the Mandelbrot cal-
culation and fixed point math,

To minimize repetition, Il assume
vou've read Larry Fogg's article on the
Mandelbrot set (Micro C issue #39
Jan./Feb. 1988) and Ear Hinrich's article
on fixed point (Micro © issue #4]
May/Tune 1988} Another useful
reference is The 80386/387 Architecture by
S. Morse, E. Isaacson and D, Albert,

22 MICRO CORNUCOFIA, #43, Sept-Oct 1968

[
=

Modes
{- The 386 has three modes — real,
rotected, and virtual 8086 (VA0S6),

& Real mode is the default, or how the
processor wakes up after you turn on the
computer. Segments in real mode are 16
bits long, and there are ng memory
protection schemes.

2 When the 386 gers nudged into
protected mode, the segments can be 32

its long, allowing huge address spaces,
and all sorts of multitasking and memory
Pprotection features become available.
V8086 _mode is very handy for run-
ning old 8086 applications within a mul-
titasking operating system; Programs
under V8086 behave very much like real
mode programs,

32-Bit Instructions

In all modes, it's possible to access 32-
bit registers and use 32-bit instructions;
the 32-bit extensions of the familiar 8086
registers are called eax, ebx, ecx, edx, edi,
esi, ebp and esp. The lower 16 bits of
these registers can still be accessed as ax,
bx, etc. MSDOS is designed for real
mode, o that's the mode we'll use.

By default, instructions in real mode
operate on 8 or 16-bit quantities. To use
32-bit_operands, an instruction st
prefixed with an override byte — 66H for
register operations, and 67H for address-
mg.

E SI)" “you have a 386 assembler, you
won't have te worry about the override
bvtes. You can freely mix 16-bit and 32-
bit instrictions in the same assembly lan-

guage program, and the assembler will

automatically insert the overrides in the
object code.

If vou don’t have a 38 ssembiler, yvou
serting “DB 66H" or "DB BeH, 67H"
before a 16-bit instriction (normally, DB
— define byte — is used in the data seg-
ment, bul most assemblers also allow
DBs in code). If there is no corresponding
16-bit instruction, you can put the entire

BEETeg
|
{ © Lse 22 .1
L e L &% b L ot
o e
LS = S B o 1 |
e PO e
INstruction must be
SUHUCLON MUET De

byvte encoding for the operation after a
.DB. For example, o code the 386 instruc-
tions —

add
shld adx,eax, 16

eax, ehy

With a non-386 assembler, you could
write:

DE GEBE
add ax, bx ;add eax, pbx
DE 66H, OFH, DAdH, OC2ZH, 10K

‘shld edw, eax, 16

The first instruction is easy, since the
older 80x86 processors have a 16-bit
“add” that corresponds exactly to the 32-
bit add; however, we have to replace the
“shid” with a bvte encoding, since the
earlier processors had no double shi& in-
structions. Byte encodings can be deter-
mined from any goc programuming
gOdE
e
Defined Bytes

There are good reasons for using the

H. W. Stockman
5308 Noreen Drive N.E
Albuquergque, WM 87111

Figure 1— p = -0.717 to -0.705

“DB" approach, even if you have a 386
assembler. For example, it is often
desirable to call an assembly a
fanction from a high level language.

Many compilers require that the func-
tion be assembled with a particular ver-
sion of Microsoft's MASM. Unfortunate-
Iy, MASM puts a peculiar header on
functions assembled specifically for 386
real mode, even if the function contains
nathing but 8086 instructions. The header
15 enough to confuse the heck out of non-
Microsoft linkers, like the linker for
Turbo C,

The DB approach circumvents _the
hﬂ§der Droblem, SIee Vou never have to
tell the assembler that the module con-
tains 386 "code. Furthermore, many C
‘compilers come with their own as-
semblers; typically, these assemblers
can't understand 3% mnemonics, so

EhEre s no alternative to the DE method.

q = -0.3135 to -0.306

I've taken the DB approach in this article
because it is the most general, and be-
cause my_favorite compiler is DeSmet

Efa thich doesn’t understand 386

MNEemonics.
e

Mandelbrot Calculations
The core of the Mandelbrot caleula-
tion is the series —

R S

where Z and C are complex numbers,
and Zo = 0. In terms of real and imagi-
nary components, we define £ = X + iY
and C = P+ iQ. It can be shown that if
Zn? = Xa? + Yo~ exceeds 4, the series will
diverge.

Mandelbrot maps, such as Figure 1,
show the divergence behavior of the
series, as a function of P (horizontal axis)
and Q (vertical axis). At each (P,Q) point

in the map, we calculate the series unl n
hits an upper limit nmax (typically 100 to
1000), or until Z,* > 4. The color of each
point is keved to the value of n when the
calculation stopped.

Figure 1 contains 640 by 400 pixels, or
256,000 different P,Q combinations. Each
pixel required an average of about 100
iterations before divergence, and each
lteration required the equivalent of 13 or
14 floating point operations. Thus, Figure
1 took the equivalent of 300 to 400 mil-
lion floating point operations; that's why
Mandelbrot diagrams are said to be “cal-
culation-infensive!

Fixed Point Math
One way to speed up Mandelbrot cal-
culations — especially on computers that
don’t have floating paint hardware (e.g.,
an 80387 or 80287 math coprocessor) —
is to substitute fixed point for floating
e e e

MICRO CORNUCOPIA, #43, Sept-Oct 1988 23

Jboint math. This idea isn't new: see, for
example, the article bv H. Katz in Dy,
Dobl's Jowrnal, Nov. 1986, However, the
386 has instructions that make fixed
point math very easv and rofask

Fixed point numbers have an integer
Fd a fractional porton, separated by
conceplual binarv point. In our program;
we'll store fixed point numbers as 32-bit
.integers, with the integer portion in the
upper & bits, and the fractional portion in
the lower 24 bits; thus the binary point is
between bits 23 and 24.

With this system, we can represent
positive or negative numbers with ab-
solute values between about 6*10° and
127.9929599, That range is fine for Man-
delbrot diagrams; X and Y will never 2et
too big, because the calculation will stop
if either Xn® or Yo® exceeds 4. And it
turns out that regions of the diagram
with both P and Q < 0.25 are pretty
uninteresting.

Fixed point numbers are added, sub-
tracted, and compared just like ordinary
32-bit integers, but multiplication is
slightly more complicated. To calculate
the fixed point product of X and Y, we
might try the C statement —

FROD = (X*Y) /16777216;

that is, the integer product X*Y must be
divided by 2% = 16777216 to get the cor-
rect fixed point product PROD. Of course,
there is a problem with this C code; the
product X*Y could be &4 bits long, which
would cause overflow in most compiled
code.

The problem disappears in assembly
language, since most 32-bit PTOCessors

have no trouble multiplving 32-bit num-

bers to form a 64-bit product, For ex-
ample, suppose we have two fixed point

numbers stored in the 386 registers eax
and ebx; to multiply these numbers, and
place the fixed point product in edx, re-
quires only two instructions:

imul ebx ;eax is implicit destinatisn
shld edx,eax, & ;result now in edsx

The imul places the 64-bit product in
the register pair edx:eax (the high bits in
edx), and the double shift instruction ad-
justs the binary point (we shift left by 8
bits, instead of right by 24 bits, because
we want the product to end up in edx).

Some programmers prefer fixed point
wifh Tobit teteger and T Tab
portions. However, I've seen Mandelbrot

“calculations done with the 16/16 format,
and the inaccuracies were pretty obvious,

even at modest magnifications.

24 MICRO CORNUCQPIA, #43, Sept-hct 1988

Figure 2 — Typical Floating Point Mandelbrot

/* Floating point version of mandel () for Dess o

/* ncol and nrow are number of column 2% can be displayed by

/* chosen eraphics adaprer/mode e.g (ne oWl = (720,348) for hare

/* (640.350) for EGh: endcclos is one less £ max { ecols the graph i
/% adapter/mede can display: e.g., endesl 1 for hercules, 15 for

/* most EGAs; FPEPTE is pointer te pixal = 5 £ Aamax 15 the

/% mAximum number of itezrations we will allow far Mandelbzor serimes. L
/* DaSmet function csts(] reads kevboard buffer. doesn't wast if no key =/
/* was pressed. similayr so Turbo C combination of kbhat () and getch() xS
mandel (Pmin, Pmax. Qmin, QOmasx, nmax, ncol, nrow, ptptr, endcolor, switohpt)
doubie Poin, Pmax, Qmin, Qmasx;

switchpt,nmax,nccl.nrou.und:olc::

void (*ptpec) ()

{
ins color, Tow, col, B, transform 1
double F.Q.¢-'>.dQ,x,y,y:am;.l.mcmlus_sqrn.

df = Pmax-Pmin;
40 = Cmaw-Qnig;

for(colmd; eol<ncol; ttecol) {
for (row=0; TOWCnrow; $+zow) |

P = Pmin + df’colf:ncol—lj;
Q = gmin + dQrrow/ (nzow-1) ;
n = 0;

= ¥ = modulus_sqrd = 0, 0;

while (modulys sqrd <= 4.0 g6 1 < nmax) {
ytemp = xry;
X = xWe - yry 4 po
¥ = ytemp + ytemp 4 p;
modulus sgrd = x*x + yEF;
nt+;
]
/* transform the =Topping iteration n to a color =/
color = transform(n, switchpt) & endeales:
['ptgtzli:=1.=uv,ce1cz)=
1
AL ‘g’ is pressed at keyboard abort the
iff{ests{)=="g') Teturn(“g’};
1

funtion */

1

END OF LISTING

Figure 3 — Fixed Point Version of Mandelbrot

/* Fixed point wersion of mandel () */

Fmax, Omin, Qmax, nmax, ncol
Ptptr, endcolor, switchpt)

Pmin, Pmax, (man, Omasx:

awitchpt, nmax, ncol, nrew, endeslor;

mandel {Pmin, nrow,

double

int

void (*PLptr))/ /* ptptr is peintar to Pixel plotting functions/
{

int coln:,row.eol,n,mandvhiln[:,n:anstonmn:

long F.Q.PO,Q0, &9, dR;

leng muldiv();

dF = (Pmax-Pmin)*16777216 + 0.5; /> 16777216 = 2 to the 24th =/

dQ = (Omax-gmin}*16777216 + 0,5;

PO = Prmin*16777216 + 0.5;

Q0 = Omin*16777216 + 0,5;

for (col=0; colcnesl: ++eol) {
for (row=0; rowsnrow; ++row) {

F = F0 + muldiv{dP,ecl,ncol-1};
2= 00 + muldiv(dQ, row, nrow-1);
T = mandwhile (F,Q, nmax} + 1;
/* 41 above depends on how 1ss iceration is defined */
color = transform(n, switchpt) & endcolor;
("ptptz) {col, row, color)
1

if{osts()=='gq') retuzn{'g’};
]
1

END OF LISTING

10} Traps most progremming

blig in final code. .

; T\ project lhrizlughpu.[
14, Corporations rely on it

2 3 the best C compi
22. Mature and reliable

ndard object format
. libraries can be used.

L2 AutomaticMAKE
- 28. Plexible overlays' -
29: Price/performance leader

i muldivilong A, int b, int c)

¢ 16-bit return address a= st
¢ HOTEZ DeSmet doas not use ™

¢ REGISTERS: eEx
- enx
eox

edx:gax

i BETURK fesult in dx:ax.

muldiv_

Th. EEh,

02n
Zen,DER rmaves ebx,word laspté)
245,080 imovsx ecx,word [esp+Ej
ul ahx

Bbh, 44h, 245,
O£t

db 665, 0£7h, D£5h
2t 66h, 0fh, Qadh, Oc2h, 100
et

END OF LISTING

Figure 4 — Assembly Language Fixed Point Calculations

¢ Multiplies 33-pit "A" By 16-bit "b", then divides By
; 16-Bat "c” such that abs(c) >= abs(bj. . NO CHECK FOR 0 DIVISOR. .

! WOTE how DeSmet figures stack upon antry:

-.-inditially helds “A"
i.-helds B

-.-holds ¢

--product A¥c (before idiv)

&% sp+Z, b at sp+6, c at apdl
" formal

imov eekx, dword [esp+2]

id ¥ ecx
:ehid edx,eax 16
ishort retuzn...

With our 8/24 format, and our limited
P,Q range, we'll have accuracy similar to
IEEE single precision. At some point,
even this accuracy isn't enough; if we trv
to examine regions with verv small P and
Q ranges (e.g,, Pmay - Prun < 0 1),

part of our Mandelbrot_map couid be

noise.

Also, note that we can get z fixed
point number in C by multiplving the
corresponding “fioat” by 27, then trun-
cating the result to a long integer. In

eneral, though, we will trv to do all our
ELxE- pont math with integer operations.
iy

The Program

In this section we'll discuss the
workhorse functions that do the Man-
delbrot calculations over a fixed P.Q
range. I'll leave it up to vou to supply the
calling program, ermatively, vou can
download the complete program and ex-
ecutable code from the Micre C RBBES
(503) 382-7643, or send 56 to Micro Cor-
nucopia, P.O, Box 223, Bend, OR 97701,
for the source listing (ask for Issue Disk
#43). Once again, | strongly recommend
reading Larrv Fope's Micro C article on
the Marndelbrot set,

Figure 2 shows how the Mandelbrot
caiculation is typicallv coded in floating
point math; this is a modification of
Larry Fogg's mandel(). Figure 3 shows
how the function is altered to use fast as-
sembly language routines. The assemblyv

functions are described beiow,

To save space in the listings, I've con-
verted the 386 instructions completelv to
byte encodings, but all the mnemonics

26 MICRO CORNUCOFIA, #43, Sept-Oct 1988

are commented m, 50 it should be easy to
adapt the programs to any compiler /as-
sembler. If vou wish to use another com-
piler/assembler, be sure vou understand
the order in which values are pushed
onto the stack. Not all compilers are ke
‘DEmet C, so you may have to change™ |
the values of “m" in instructions contain-
ing “lesp+m].”

Also note that some compilers will re-
quire vou to save the si and di registers
at the beginning of each function. Finally,
we'll assume that the upper 16 bits of esp
are zeroed and considered meaningless
bV our operating system; since we're
launching the program from MS-DOS,
that's a valid assumption.

The Assembly Language Functions

The first assembly function, muldiv(),
performs the operations A*b/c, where A
is a 32-bit integer, and b and ¢ are 16-bit
integers such that Ib| < icl. The calcula-
tion is done in a manner that avoids
overflow and truncation. This type of
function is extremelv useful in DSP (digi-
tal signal processing) applications; since
muldivl) requires verv few 386 instruc-
tions (see Figure 4), it serves as a good
beginning example.

Note that with the 386 we can use
lesp] directly to address the stack; that is,
we don't have to go through the “push
bp, mov bp, sp . formalism so familiar
to 8086 programmiers. However, we must
make sure esp actually has a 16-bit value
when we address the stack, else we'll
generate a real mode stack exception
error,

Figure 5 — Looping Routine

; mandwhile (long P, long @, int nmax)
; Performs all calculations for "while" lsop in L.Fogg's mandel ()
© functien, using fixed pi math with binary pt between bits 23 ame 24

: FOR: DeSmet ClasmBY small case, ..

: In EERL MODL: user 3Z-hit everrides on register length and addresging to

: gain performance of 3Z-bit regs and instructiems. ..

. Heturns # itaraticns before divergence (16-bit int rerurnes in ax) .

: Fote 1/3 rd of instructions are for rounding, te get Juss 1/2 extra bit of
i accuracy: if you aren’t that picky, dump these instructions for 10% o- more
extra speed...

--Ytemp at top of loop, modulus_sqrd

; REGISTERS: ebp

: at bottem of loop

: edx:eax -.multiplication and temporary storage
: edi 3

i esi -

& whx R

: CT ¥

i RETURNS stopping number of iteraticns in ax.

dseg
public countex
counter dw o
cseg
publie mandwhile
mandwhile :
db 66h, 55h ipush ebp
jmmcoat P ..,
de 67h, 66n, 8Bh, 7Ch, Z4h, O6h imov edi dwozd [esp+é]
t==-gat O ,

db 67h, 66h, BBh, 74h, 24h, OAh ;mev @5l dword [esp+ll]

&b 67h, 8Bh, 44h, 24n, OEh
fm==initialize counter ...

mov word countes,ax

i--"Eerc out x and ¥ storage ..
dc BER, 33h, 0DBhL

db 66k, 33n, 0CSh

rmov ax, word [esp+ld)

xor ebx, ebx
INOE HoX, ecx

leoper: ;---ytempex#*y-——

db 66h, BBh, DC3h IMOV eax, ebx

P AENER = YRy 4 Feeeeee

db &6h, EBR, 0C3h

db 66h, OFTh, OEBh

db 6€h. 05h, 0OR, OOk, B0hL, OOk
db 66k, 83h, 0D2h, OOn

db 66h. OFh, OA4h, 0C2h, 0Bk
db 66k, 8Bh, ODAh !

de 66k, BEh, 0Clh

db 66k, OFTh, OESh

db 66h, 05k, 00h, O0h, 80k, ooh
db 66h, 83h, 0D2h, OoOh

dn 66n, OFR, OAdh, 0CZh, 08h
de 66n, 2Bn, ODAh

db &6h, 03k, ODFh
i==-y=(ytemp<<l) + Q-=---

db 66h, 0Dlk, OESh

db 66h, 03h, OEEh

db 66h, EBh, 0CDh

i~=-modsgrd = x*x + yry---

db 66h, EER, OC3h

db E6h, 0FTh, OEBh

db 66h, 05h, 00n, 0Oh, BOh, 0Ok
db &R, 83k, 0DZh, 00h

db 66k, OFh, OR&h, 0CZh, 0BR
db 66h. BBh, OEAK

db 66h, EBh, OC1h

db §6h, OF7h, 0ESh

db 66k, 05h. OO, 00k, 80h, 00h
ds 66k, B83L, 0D2h, 00K

dbs 66h, OFh, OASh, OC2h, O8h
db 66h, 03h, OEAL

—

MOV eRx, ebx
imul ebsx
dd eax, BODDOOH

;add eax, BE00000H
jade edx, 0

ishld edx,eax, @
rub she, ads
;odd ebx, edi

ishl ebp, 1
;add ebp,esi
imov ecx, ebp

imev eax, ebx
rimul ebx

iadd eax, 80000CH
iade edx, 0

:shld edx, aax, §
imav ebp, edx

FRmOV eax, ecx
simul eex

;add sax, B00000H
fade edx, 0

;shld edx,eax, 8
;add ebp,edx

db 66h, OF7h, 0ESh simul eex

db 66h, 05h, OOk, 00k, B0h, 00h ;add eax, 800000K ;for rounding. ..
db 66h, 83h, 0D2h, 00h Jade edx, 0 ifor rounding.,,
d- 86h, OFn, DALh, 0C2n, 0Bh :shld edx, eax, & idiv by 2=*24. ..
ds 66h, BBh, OEAh imov ebp, edx

cadd P. ..

radd Q. .,

iT--test if modsgsd > "d"-== (ET10BB64 = &+ {1 << 24))---

db 66h, Elh, OFDh, 00h, 00k, 00h,04h fomp ebp, 6710BE64

MICRO CORNUCOFPIA, #43, Sept-Oct 1988 27

! Piease send me;

I O Modulz-2 Compller Pack (DOS)3 ©0.00
O Modula-2 Toalkit (DOS) 5 169.00
O Modulz-2 Development § 24900
System (DOS, includes
Compiler and Toolkit]
O Modula 05/2 § 340.00
O Modula-2 VAX/VMS version $2,500.00
Shipping & Handling (peritem) § 6.50
CA residents add applicable
sales tax R
Total e
[Check/money order included
O Visa 2 MasterCard

Card Number
Cardnolder Name
Authorized Signature
Ship to:

Sate
Zip Phene
Cffer valid in LS. Only Dealer inguiries welcome.
Educational prices availahle. CL93E
Send to:

LOGITECHI

tech, Inc. E
Attn: Coupon Redemption Program
L- 6505 Kaiser Drive, Fremont, CA 94555 -

IG]

Reader:Service MNumber 12

jae home
dec word countar
inz looper

home mov ax, word counter
neg ax

dr 67h, 03k, 44h, 24h, OER
de 66h, SDR

rmdd ax, word [esp+ld]
ipop ebp

¥N, of TiGmE &

Figure 6 — Smoothing Color Transitions

2-20-88 transform{int n, int switchpt)
POR: DaSmet small case CfasmBE

: ...peturns in ax the "eeler" which is then anded with (maxcolors-1) ...

: eenverts the iterations returned by mandwhile() to a leg secaling, starting at
the switchpt. Bquiv. to C ceoding:

ifi{n < switchpt) celer = n;

: else for(scler=i=switchpt, ine=1; i<n; i=switchpt+ (inc<<=1), coloxtv);

.. Howewver, 386 is sc fast we need to translate To asm te get full benefit!

: KOTE DeSmet short zetuzn via jmp !f

Eseg

public transform

transform : pop di ;return address.. .
pop cX b 1 P
pop bx rawitehpt. ..
aub sp, 4 ;required by DeSmet for short return...

ex, bx
ja do_loop
mov ax,cx
Jmp i :short return...
do_loop: mov ax,bx ;init coler (ax) with switchpt...

mov Bi,1 el = inec. ..
mav dx, bx ;init i (dx) with switchpt...

lecplt: cmp dx, oX Tepmpare i (dxletesn (oxio..
jge done
zhl =i,1 dine <<= 1...
mov di, bx
add dx,si ;i = switchpt + inc...
inc ax
jEp Leopit
dene: jmp di ;short return, color in &x...

END OF TICURE &
Figure 7 — Detects Presence of 386

; is_386() . ne argumants. ..

: Checks for presence of 386...

; FOR: DeSmet C small case, asmBB

: RETUBNS: 0 in ax if processer not a 3B6; else returns non-zero ...
; NOTE short return via J=p.

. REF: Juan E. Jimenez, Turbo Technix Jan/Feh 8B, p. 55.
cseq

public
is_386_:

is 388
pop di
pushf
xor ax,ax
push ax
pept
pushf
Pop ax
and ax,B000L
sub ax, 8000
3z home2

;return address ...

mov ax, 70008
push ax
popf

pushf

:if here, either ZB6 or 386 ...

Pop ax
and ax, 7000k
homa2: Smp di
END OF FIGURE

28 MICRO CORNUCOPLA, #43, Sept-Oct 1986

The "movex” instruction tmove with
sign extend) is new to the S0xSe family,
and is handy in converting 16-bit quan-
tities for use in 32-bit instructions.

Perhaps the most notable aspect of
muldiv() is the use of shld edx, eax,16 at
the end of the function, This instruction
iz needed because DeSmet C, like most
16-bit 80x86 compilers, returns 32-bit in-
tegers in du:ax. After the idiv instruction,
the desired result is in eax; the shid in-
struction leaves eay unchanged, but
copies the upper 16 bits of eax into dx, so
ultimately the correct value is returned in
dxiax.

Looping Caleulations

The second and more important func-
tion, mandwhile() (see Figure 5), replaces
the inner “while” loop in Figure 2 it
returns only the stopping value of n.

After the 32*32 bit multiplications, the
“add eax,800000H" and “adc edx,0H" in-
structions assure proper rounding (even
for negative numbers) when we use the
shid instruction. This step adds only a lit-
tle accuracy, s0 vou can eliminate the
rounding for about 10% more speed and
substantially shorter coding. Again, note
that we actually accomplish the 24-bit
“division” — required to adjust the bi-
nary. point — with an 8-bit left shift

mandwhile() is well suited for the 386
architecture, and should run fast even on
computers with siow memory, because
the algorithm uses the 386 pre-fetch
quene very efficiently.

The imul instrucion is relatively
“slow,” averaging about 30 clocks over
the PQ region of interest. While each
imul executes, there is plenty of time to
fetch and decode the faster add and mov
instructions. The queue gets emptied
only at the end of each loop iteration,
and is quickly refilled.

The shld instruction is ideal for ad-
justment of the binary point after multi-
plication. Typically, the equivalent opera-
tion takes 3 instructions on other 32-bit
microprocessors — ez, if a 68020 had
the &4-bit product in D2:D1, you would
probably code:

1sl.1 #8,.D2
isz.1 #24.D1
or.li bl,.D2

to replace the shld. Furthermore, the
68020 32°32 multiplication is
somewhat slower than the 386
multiplication, so the 386 really has
an advantage.

Final Functions

The last two functions called by man-
del{) are transform() (see Figure 6) and
{piptr)(). The purpose of transformi) is
to “slow down'" the alternation of colors
in: rapidly changing portions of the map,
making it easier to see broad patterns.
Values of n up to the “switch point” are
eturmed unchanged by the function, but
vaiues above switchpt are converted to
ing> n-switchpt) + switchpt. This function
&= easily written in C, but for speed I've
also included an assembly language ver-
sion.

The value retumed by transform() is
“anded” with endcolor to obtain the
pixel color (the “anding” process as-
sumes vour graphics adapter can display
2™ colors, with endeolor = 2 - 1). The
transform() function is optional; if vou
don't want to use it, simply code color =
n & endeolor instead. The color and coor-
dinates of the point are then passed to
(ptptr)(), the pixel plotting function.

Since ptptr is an argument of man-
del(), we can allow main() to detect the
graphics adapter in the computer and
choose the appropriate plotting function.
If you know for sure that you will be
using only one graphics adapter, you can
remove ptptr from the argument list of
mandel() and replace (*ptptri() with an
explicit plotting function.

The plotting functions can be coded in
C (e.g., Micro C issue #39 Jan./Dec. 1988,
pp. 24 and 84), but the rest of mandel() is
5o fast, it is preferable to use assembly
language.

I've included another useful function
in Figure 7; is_386() retums a non-zero
value if the computer has a 386 proces-
sor, else it returns a zero. Thus you can
keep non-386 computers from trying to
run 386 code (and consequently going off
into never-never land).

How Fast?

How much speed did we gain by
using 2-bil Instructions? In the past, Tve
written fixed point Mandelbrot programs
in 16-bit 8086 code; on a 16 MHz B0386,
16-bit code takes eight times longer to
run than the 32-bit version.

In fact, our 32-bit version is at least
three times faster than a 16 MHz 80387
With hand-coded assembly language; 12-
15 times faster than an 8 MHz 80287; 22
Umes faster than fixed point routines on
4 Macintosh Plus; 100-200 times faster
than software floating point on an § MHz
BO286; or as fast as an 6600 VAX super-
Iiinicomputer. a

There are probably more efficient al-
gorithins than Figure 2. If you find them,

perhaps vou'll get the caleulation time
down to seconds.

Final Words

We barely skirted the 386 features you
can use under M5-DXDS. We didn't cover
advanced addressing mddes, nor all the
Wummmm The 386 is full
of goodies, such as BSF and BSR (bit scan
forward and bit scan reverse), which

make soltware floating point fast and

very easy.

It's important to explore. The chip has
s0 much potential, it would be criminal
to use the 386 as nothing more than & fast
286, Instead of chewing vour fingernails
while Microsoft inflates OS/2 a few more
megabytes, start lacing your MS-DOS
programs with high-speed 32-bit instruc-
tﬁf_'ﬁ___'_“"_'_"—”__'_
ments; but how many of vour programs
really need data structures larger than
64K? Probably very few, and 05/2 can’t
help you with that problem anyway.
When the protected mode operating sys-
tem finally rolls around, vou will be that
much ahead of the pack.

LR AR

Micro Cornucopia
MICRO AD
RATES

£88 CNE TIME
$267 THREE TIMES
£474 SIX TIMES

Full payment must
accompany ad. Each ad
spaceis 2 1/4"x 1 3/4".

This coupon
worth . off!
Send this coupon
with your prepaid
MICRO AD
& save $5. off regular
])I'iCE 1
Reg. price $99—with coupon $94:
ONE TIME ONLY!

[l
1
1
H

DBASE™ for Norton Guides™
INTRO PRICE $§69.00

L

| DBASE ON _LINE is a “pop-up” DBASE language reference sysiem
which includes over 2 million bytes of complete reference with clear
concise descriptions, and detailed examples 1o every command function
and feature for:
CLIPPER™ ({Summer "87)
dBASE III Plus™
dBASE IV™

QUICKSILVER™ (Diamond Release)
dBXL™ (Diamond Release)
FoxBASE+™

DBASE ON LINE is powered by the Norton Guides “reference engine™
Memary reguirements: maximum 63k.
Can run in resident or pass-through memory mode.
Can be “popped-up” any tme, inside any program.
Automatically looks up a keyword read from the screen.
Full or half-screen display.
All available Noron language guides will run under the Nerton reference engine”.
+ Alsoneluded is a compiler and linker, allowing the creation of your own reference guides.
Additional Features:
- Tables - keyboand retum codes. line drawing characiers, calor codes, error codes,
ASCII chant and much maore.
The Clipper ard Quicksilver puides also include commands and switches for the compile/ink
cyele, = table of reserved words and complete reference 10 the extend system.

ORDER: DBASE ON LINE und pet the above lanusge puides. a reference crgine. @ reference puids
compilesflinker and manual
30 Day Moncy Back G - Sansfaction G d
To order, call or write:
SofSolutions
440 Quentin Dr. + San Antonie, TX 78201 » (512) 735-0746

Teademurks. Noston CusdePeies Nomon Comstisg, &B ASLAshion Tal. Clipper Nastuckes, d5X1.
e ntver Worsch Synems. FosBASEfFax Soffwars

Reader Service Number

MICRO CORNUCOPLA, #43, Sept-Oct 1988

29

